Как създаваме нов тип?
type
type AwesomeInt int
Как ще укажем, че типа Car
имплементира интерфейса Vehicle
?
Car
да има правилните методи, то той имплементира интерфейса
Как проверяваме дали някой Vehicle
е Car
?
Как може да преизползваме вече имплементирани методи и атрибути на някой тип в нов?
type Student struct { Person }
package main
import (
"fmt"
"math/rand"
"time"
)
func main() { boring := func(msg string) { for i := 0; ; i++ { fmt.Println(msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } } go boring("boring!") fmt.Println("Listening.") time.Sleep(2 * time.Second) fmt.Println("You are way too boring. I am leaving.") }
time.Sleep
Пакет, който ни дава синхронизационни примитиви от ниско ниво:
Cond
Mutex
Once
RWMutex
WaitGroup
Изчаква колекция от горутини да приключат и чак тогава продължава с изпълнението.
Така не правим простотии със time.Sleep
, както одеве.
package sync type WaitGroup struct {} func (*WaitGroup) Add() func (*WaitGroup) Done() func (*WaitGroup) Wait()
package main
import (
"fmt"
"math/rand"
"sync"
"time"
)
func main() { var wg sync.WaitGroup boring := func(msg string) { for i := 0; i < 8; i++ { fmt.Println(msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } wg.Done() } wg.Add(1) go boring("boring!") fmt.Println("Waiting for the boring function to do its work") wg.Wait() }
Стига вече с тая скука!
package main
import (
"fmt"
"net/http"
"sync"
)
func main() { var wg sync.WaitGroup var urls = []string{ "http://www.golang.org/", "http://www.google.com/", "http://www.somestupidname.com/", } for _, url := range urls { wg.Add(1) // Increment the WaitGroup counter. // Launch a goroutine to fetch the URL. go func(url string) { content, err := http.Get(url) // Fetch the URL. if err == nil { fmt.Println(url, content.Status) } else { fmt.Println(url, "has failed") } wg.Done() // Decrement the counter when the goroutine completes. }(url) } // Wait for all HTTP fetches to complete. wg.Wait() }
package sync type Mutex struct {} func (*Mutex) Lock() func (*Mutex) Unlock()
private
атрибут на наш типUnlock()
е добра идея да бъде в defer
sync.Locker
package main
import (
"fmt"
"sync"
)
func main() { var ( count int countMtx sync.Mutex countWg sync.WaitGroup ) worker := func() { countMtx.Lock() count += 1 countMtx.Unlock() countWg.Done() } for i := 0; i < 8; i++ { countWg.Add(1) go worker() } countWg.Wait() fmt.Println("counter:", count) }
package main
import (
"fmt"
"sync"
)
func main() { var ( count int countWg sync.WaitGroup ) ch := make(chan struct{}, 1) worker := func() { ch <- struct{}{} count += 1 <-ch countWg.Done() } for i := 0; i < 8; i++ { countWg.Add(1) go worker() } countWg.Wait() fmt.Println("counter:", count) }
package sync type RWMutex struct {} func (*RWMutex) Lock() func (*RWMutex) Unlock() func (*RWMutex) RLock() func (*RWMutex) RUnlock() func (*RWMutex) RLocker() sync.Locker
sync.Locker
RLock
блоква само докато някой използва Lock
RLocker()
връща Locker
, който ще използва RLock
и RUnlock
на оригиналаОбект от този тип ще изпълни точно една функция.
package main
import (
"fmt"
"sync"
)
func main() { var once sync.Once var wg sync.WaitGroup onceBody := func() { fmt.Println("Only once") } anotherBody := func() { fmt.Println("Another") } for i := 0; i < 10; i++ { wg.Add(1) go func() { once.Do(onceBody) once.Do(anotherBody) wg.Done() }() } wg.Wait() }
type Cond struct { // L is held while observing or changing the condition L Locker // contains filtered or unexported fields }
condition-variable
или monitor
select { case v1 := <-c1: fmt.Printf("received %v from c1\n", v1) case v2 := <-c2: fmt.Printf("received %v from c2\n", v2) default: fmt.Printf("no one was ready to communicate\n") }
Накратко: switch
за канали.
Надълго: Изчаква първия канал, по който е изпратена стойност
default
default
блокира и изчакваselect { case result := <-google: fmt.Printf("received %v from google\n", result) case result := <-bing: fmt.Printf("received %v from bing\n", result) case <- time.After(1 * time.Second): fmt.Printf("timed out\n") }
package main
import (
"fmt"
)
func f(left, right chan int) { left <- 1 + <-right } func main() { const n = 100000 leftmost := make(chan int) right := leftmost left := leftmost for i := 0; i < n; i++ { right = make(chan int) go f(left, right) left = right } go func(c chan int) { c <- 1 }(right) fmt.Println(<-leftmost) }
package main func fib() <-chan int { c := make(chan int) go func() { for a, b := 0, 1; ; a, b = b, a+b { c <- a } }() return c } func main() { fibonacci := fib() for i := 0; i < 10; i++ { println(<-fibonacci) } }
func talk(msg string) <-chan string { c := make(chan string) go func() { for i := 0; ; i++ { c <- fmt.Sprintf("%s: %d", msg, i) time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond) } }() return c }
package main
import (
"fmt"
"math/rand"
"time"
)
func main() { doycho := talk("Doycho") ned := talk("Ned") for i := 0; i < 5; i++ { fmt.Println(<-doycho) fmt.Println(<-ned) } }
// TALK START OMIT
func talk(msg string) <-chan string { // HL
c := make(chan string)
go func() {
for i := 0; ; i++ {
c <- fmt.Sprintf("%s: %d", msg, i)
time.Sleep(time.Duration(rand.Intn(1e3)) * time.Millisecond)
}
}()
return c
}
// TALK END OMIT
func fanIn(input1, input2 <-chan string) <-chan string { c := make(chan string) go func() { for { select { case s := <-input1: c <- s case s := <-input2: c <- s } } }() return c }
package main
import (
"fmt"
"math/rand"
"time"
)
// TALK START OMIT
func talk(msg string) <-chan string { // HL
c := make(chan string)
r := rand.New(rand.NewSource(time.Now().UnixNano()))
go func() {
for i := 0; ; i++ {
c <- fmt.Sprintf("%s: %d", msg, i)
time.Sleep(time.Duration(r.Intn(1e3)) * time.Millisecond)
}
}()
return c
}
// TALK END OMIT
// FANIN START OMIT
func fanIn(input1, input2 <-chan string) <-chan string { // HL
c := make(chan string)
go func() { // HL
for {
select { // HL
case s := <-input1:
c <- s // HL
case s := <-input2:
c <- s // HL
} // HL
}
}()
return c
}
// FANIN END OMIT
func main() { c := fanIn(talk("Ned"), talk("Doycho")) for i := 0; i < 10; i++ { fmt.Println(<-c) } }
func fanIn(input1, input2 <-chan string, finish chan struct{}) <-chan string { c := make(chan string) go func() { for { select { case s := <-input1: c <- s case s := <-input2: c <- s case <-finish: close(c) wg.Done() return } } }() return c }
package main
import (
"fmt"
"math/rand"
"sync"
"time"
)
var wg sync.WaitGroup
// TALK START OMIT
func talk(msg string) <-chan string { // HL
c := make(chan string)
r := rand.New(rand.NewSource(time.Now().UnixNano()))
go func() {
for i := 0; ; i++ {
c <- fmt.Sprintf("%s: %d", msg, i)
time.Sleep(time.Duration(r.Intn(1e3)) * time.Millisecond)
}
}()
return c
}
// TALK END OMIT
// FANIN START OMIT
func fanIn(input1, input2 <-chan string, finish chan struct{}) <-chan string { // HL
c := make(chan string)
go func() {
for {
select {
case s := <-input1:
c <- s
case s := <-input2:
c <- s
case <-finish: // HL
close(c) // HL
wg.Done()
return
}
}
}()
return c
}
// FANIN END OMIT
func main() { wg.Add(1) finish := make(chan struct{}) c := fanIn(talk("Ned"), talk("Doycho"), finish) for value := range c { fmt.Println(value) if len(value) > 8 { close(finish) } } wg.Wait() }